Self Check ch 13
1) Why is the statement
if (width == 1) { return 1; } 
in the getArea method unnecessary? 
Answer: Suppose we omit the statement. When computing the area of a triangle with width 1, we compute the area of the triangle with width 0 as 0, and then add 1, to arrive at the correct area.
2) How would you modify the program to recursively compute the area of a square? 
Answer: You would compute the smaller area recursively, then return
	smallerArea + width + width - 1. 
[][][][]
[][][][]
[][][][]
[][][][]
	Of course, it would be simpler to compute 
[image: selfCheck2]
3) Do we have to give the same name to both isPalindrome methods? 
Answer: No — the first one could be given a different name such as substringIsPalindrome. 
4) When does the recursive isPalindrome method stop calling itself? 
Answer: When start >= end, that is, when the investigated string is either empty or has length 1. 
5) Is it faster to compute the triangle numbers recursively, as shown in Section 13.1, or is it faster to use a loop that computes 1 + 2 + 3 + . . . + width? 
Answer: The loop is slightly faster. Of course, it is even faster to simply compute width * (width + 1) / 2. 


6) You can compute the factorial function either with a loop, using the definition that n! = 1 × 2 × ... × n, or recursively, using the definition that 0! = 1 and n! = (n - 1)! × n. Is the recursive approach inefficient in this case? 
Answer: No, the recursive solution is about as efficient as the iterative approach. Both require n - 1 multiplications to compute n!. 
7) What are all permutations of the four-letter word beat? 
Answer: They are b followed by the six permutations of eat, e followed by the six permutations of bat, a followed by the six permutations of bet, and t followed by the six permutations of bea. 
8) Our recursion for the permutation generator stops at the empty string. What simple modification would make the recursion stop at strings of length 0 or 1? 
Answer: Simply change if (word.length() == 0) to if (word.length() <= 1), because a word with a single letter is also its sole permutation. 
9) Why isn’t it easy to develop an iterative solution for the permutation generator? 
Answer: An iterative solution would have a loop whose body computes the next permutation from the previous ones. But there is no obvious mechanism for getting the next permutation. For example, if you already found permutations eat, eta, and aet, it is not clear how you use that information to get the next permutation. Actually, there is an ingenious mechanism for doing just that, but it is far from obvious — see Exercise P13.12. 
10) What is the difference between a term and a factor? Why do we need both concepts? 
Answer: Factors are combined by multiplicative operators (* and /), terms are combined by additive operators (+, -). We need both so that multiplication can bind more strongly than addition. 
11) Why does the expression parser use mutual recursion? 
Answer: To handle parenthesized expressions, such as 2 + 3 * (4 + 5). The subexpression 4 + 5 is handled by a recursive call to getExpressionValue. 
12) What happens if you try to parse the illegal expression 3 + 4 * ) 5? Specifically, which method throws an exception? 
Answer: The Integer.parseInt call in getFactorValue throws an exception when it is given the string ")".


image1.png

